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A relation between the density of states and range of 
localization for one dimensional random systems 

D J THOULESS 
Department of Mathematical Physics, University of Birmingham 

MS received 20 September 1971 

Abstract. The formula of Herbert and Jones relating the distribution of eigenvalues to the 
range of localization of an eigenstate for the Anderson model in one dimension is discussed. 
An explicit formula for the localization distance is given for Lloyd's model in one dimension. 
The formula, which is essentially a dispersion relation, is generalized to the case of the 
Schrodinger equation in one dimension. 

Herbert and Jones (1971) have shown that, for a particular model of an electron moving 
on a one dimensional array of sites, the range of localization of the eigenstates can be 
related to the distribution of the energy levels. Their argument can be applied to any 
system whose eigenstates are described by equations of the form 

8,"; - - I ( - l , i ~ T - l  = E& (1) 

where i runs from 1 to N ,  and the a; are amplitudes (which can be t a k g  tg be real) for 
the eigenstate with eigenvalue E,. Since the chain runs from 1 to N,' Yo, and VN, N +  

can be taken to be zero. This equation represents the wave equation for an electron in 
the tight binding approximation, but, with a suitable modification, it can represent a 
normal mode of a chain of coupled harmonic oscillators. 

The result is based on a study of the Green function (resolvent) for this system, 
defined by 

( E  - ai)Gij(E) + y, i+lGi+l j (E)  + K-l,iGi-lj(E) = 6, (2) 
The quantities Gij(E) are the elements of a matrix which is the inverse of the tridiagonal 
matrix El - H, where I is the unit matrix and H is the hamiltonian of the system whose 
niatrix elements are defined in equation 1. The Gl,v element is particularly easy to find, 
since the cofactor of the matrix element (El - H ) l N  is 

N - 1 

Il K , i + j  
i =  1 

and so we have 
N -  1 

GIN(E) = fl y , i + l / d e t  (El - H )  
/ i =  1 

v -  1 / N 

(3) 
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There are two interesting interpretations of this result. Firstly, since G,, has a pole 
at E = E,, the value of a?& can be found from equation 3. Taking the of residue 

logarithm we get 
N -  1 

The (N - 1)th root of the product of the amplitudes at the two ends of the chain for a 
normalized eigenstate with eigenvalue E ,  is therefore equal to the geometric mean of 
the matrix elements Y ,  divided by the geometric mean of the differences between 
E,  and the other eigenvalues of the system. This can tell us whether or not the eigenstate 
is localized, since the ( N  - 1)th root of this product of the amplitudes tends to unity 
as N tends to infinity for a nonlocalized eigenstate, whereas it tends to a constant less 
than unity, which we denote by exp ( - A p ) ,  for a localized eigenstate; we expect that, 
if the eigenfunction has its maximum value at the site I ,  a,  and u , ~  should be of order 
exp { -ELp(I' - 1)) and exp { -E.,(N - i ) }  respectively. It cannot be greater than unity. 
The quantity A,' is the fall-off distance for this eigenstate, and, from equation 4, it is 
given by 

11 N-1 
(N - 1)- '  c In ] E ,  - E,/ - (N - l ) - '  c In l Y , L + l  ( 5 )  

For a long statistically homogeneous chain the sum over states can be replaced by an 
integral over the density of states, since no individual state contributes significantly 
to the average, unless two states happen to have an exponentially small spacing. Writing 
V for the geometric mean of the off-diagonal matrix elements and p(x)  for the density 
of states we get 

N-rm 31+P I =  1 

AD = p(x)  In 1 E,  - x /  dx - In I VI I 
A second interpretation of the Green function gives the same result. One can ask 

what would be the amplitude a,$,(E) if the set of equations (l) ,  with the exception of the 
final one with i = N, were solved with E, replaced by an arbitrary energy E ,  and with 
the initial condition a ,  = 1 ; the recurrence relations could be solved successively to get 
this amplitude. The answer is 

Unless E is within a distance of order exp ( -  N) of an eigenvalue, in which case G,, is 
very large, we get 

AN@) (N - I ) - '  In a,(,?) 1: p(x) In lE - x /  dx - In 1 VI (8) l 
and so a,(E) is exponentially large unless the right side of this equation is zero. Com- 
parison of equations 8 and 6 shows that the same exponent occurs in both cases. 

For a regular chain the eigenstates are stan'ding waves, and so ].(E) must be zero 
within the band. This implies that the real part of the Green function must be zero 
within the band, since differentiation of the right side with respect to E gives the real 
part of the Green function. 

This formula allows the localization distance to be determined if the energy spectrum 
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is known. For example, in the case of the Cauchy distribution, for which the Green 
function was determined by Lloyd (1969), an explicit algebrait expression for A: can be 
obtained. A reasonably compact expression of the result is 

(9) 
from which it can immediately be seen that, when the width y of the Cauchy distribution 
is nonzero, the value of i. is nonzero. 

A relation similar to equations 6 and 8 can be obtained also for one dimensional 
systems satisfying the Schrodinger equation 

coshi. = (47/)-’ [{(27/ + E)’ + Y ’ ) ’ ’ ~  + { (2V - E)’ + 1’2)112]  

$” + V(X)$ = E$ (10) 

in the interval from 0 to X ,  with the boundary condition that $(x )  vanishes for x = 0 
and for x = X .  For an arbitrary value of E we write (x ,E)  for the solution of the equa- 
tion that vanishes and has derivative equal to unity at x = 0, and &(x,E) for the solution 
that vanishes at x = X and has derivative - 1 there. The Green function can be written 
as 

h 2  
2m 

- -  

x > x’ 

x < x’ 

since &(x) = $R(0) is equal to the wronskian of the two sc.Jtions. 
to introduce another Green function 

is convenient also 

x > x‘ - - 4 R ( X ) 4 ) I . ( X ‘ )  + 4 L ( x ) 4 R ( x ‘ )  - 

(12) 
G,(.Y,.x ;E)  (fi2/2m)4,(W L o  x < x‘ 

which provides a solution of an inhomogeneous equation that vanishes and has zero 
derivative at x = 0. Differentiation with respect to E of the equation for 4, gives 

h2 E 2  
2m ax2 

E + -- - V ( x )  

which has the solution 

In the special case x = X we get 

(13) 

= 4 L ( X )  $: G(x’,x’;E) dx‘ 
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This equation cannot immediately be integrated to give a result of the form of equa- 
tion 8, because the density of eigenvalues E, is too great at high energies-it ldlis off only 
as E;”’. We can divide equation 15 by +,(X) and subtract from it the corresponding 
equation in the case of zero potential, and then integrate so that we get 

lnI4JX)/4W)l = [ P ( 4  - PO(41 lnlE - z/ dz (16) J 
where 4: is the solution of the Schrodinger equation for a free particle and po is the 
corresponding density of states. This is the formula equivalent to equation 8. An equation 
equivalent to equation 6 can be obtained by subtracting lnlE - E,I from both sides of 
equation 16 and taking the limit E = E,. On the left side this gives ln{(&$,j8E)/@}, 
which can be evaluated by use of the first line of equation 15. Since E, is an eigenvalue, 
4, and 4R are both proportional to the normalized eigenfunction $,, with constants of 
proportionality determined by the derivatives at the end points. The result is 

( ~ ( 4  - 6 ( z  - E,) - p0(z))  lnlEp - z /  dz 

(17) 

A formula such as equation 16 or 17 can be used to find an explicit formula for the 
localization length for a system whose energy spectrum is known. such as the ‘gaussian 
white noise’ system which was solved by Frisch and Lloyd (1960). As was shown by 
Halperin (1965), the integrated density of states for this system is given by 

(18) N(E) = Xn-’[{Ai(-2Em/R2))’ + {Bi(-2Em/h)j2]-’ 

Equation 16 can be integrated by parts to give 

and substitution of equation 18 in this gives, for large positive E 

FE2 
1, (EX)-’ { N ( z )  - N,(z)} dz = - s 8mE 

where A. is the reciprocal of the localization distance. This formula was evaluated by 
using the properties of the modulus and phase of the Airy function given by Abramowitz 
and Stegun (1964). Several more terms of this expansion of A in powers of E - ’  have 
been given by Borland (1963). 

Again it should be noted that in the energy bands of any regular chain the right sides 
of equations 16, 17 and 19 divided by X should vanish in the limit of infinite X ,  and this 
implies that the density of states satisfies a dispersion relation, and that the real part of 
the Green function is zero in the energy band. 

A simple explanation can be given of the existence of these dispersion relations 
connecting the exponential fall-off rate with the density of states. Since the number of 
states with energy less than E can be found by counting the number of nodes of the 
wavefunction with energy E, the wavenumber k(E) gives the integrated density of states 
per unit length. It is possible to define a complex wavenumber, analytic except on the 
real axis, whose real part gives the integrated density of states and whose imaginary 
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part gives the fall-off rate. One possible definition for this wavenumber for a statistically 
homogeneous system is 

i 
x-+'3c x 

k ( E )  = lim -In &(XI 

where 4,- is the wavefunction which vanishes and whose derivative is unity at the origin. 
This function is an analytic function of E ,  proportional to E l l 2  for large E for a continuous 
system, and therefore satisfies the dispersion relations given in this paper. 

Some very similar results have been obtained by Hirota and Ishii (1971). 
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